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In two preceding articles the complex shear viscosity of a dispersion of vesicles has been deter-
mined and from an observed macroscopic relaxation time that pertains to deformation of vesicles
a value of the static shear modulus has been calculated with the use of the Oldroyd model. In
the present paper this model has been extended by incorporating in the shear behavior of the lipid
bilayer a linear viscoelastic behavior with one relaxation time in order to be able to relate the
macroscopic relaxation time to a dynamic shear modulus instead of a static shear modulus. The
latter is believed not to exist. With the extended Oldroyd model the experimental results can be
interpreted. This leads to a value of the dynamic shear modulus.

PACS number(s): 68.10.Et, 82.70.Dd, 82.70.Kj, 83.50.Fc

I. INTRODUCTION

Vesicles are liquid spheres enclosed by a lipid bilayer.
The linear viscoelastic behavior of a colloidal dispersion
of vesicles has been determined in two previous papers
[1,2]. The complex viscosity n* has been measured as a
function of angular frequency w. For fresh egg-yolk bi-
layer vesicles two sets of relaxation processes can be seen
in the frequency range between 70 Hz and 235 kHz. With
increasing age of the bilayers a third relaxation process
becomes visible at high frequencies. The longest relax-
ation time is of entropic nature and is also seen in col-
loidal hard-sphere dispersions. The shorter second and
third relaxation times have been analyzed with a theo-
retical model developed by Oldroyd [3,4]. The second
relaxation time occurs as a consequence of the deforma-
tion of the vesicles and was related to the influence of the
static surface shear modulus of the bilayer. The short-
est relaxation time occurs also as a consequence of the
deformation of the vesicles, but is dominated by a static
surface dilatational modulus. From these measurements
bounds of the static surface shear modulus, static surface
dilatational modulus, static surface shear viscosity, and
the curvature modulus have been determined.

In biophysical and chemical literature it is believed
that the static shear modulus of a lipid bilayer does not
exist, see literature in [1]. This is substantiated in the fol-
lowing reasoning. At temperatures above the transition
temperature 7, the lipid bilayer is in a liquid-crystalline
state and a lipid molecule can move freely through the
membrane at time scales longer than its self-diffusion
time over a distance in the order of the size of a molecule.
Therefore at sufficient long time scales no energy can
be stored in the displacement of lipid molecules with
respect to each other and then a static shear modulus
does not exist. However, at sufficient short time scales
a dynamic shear modulus can exist and if relevant the
measured relaxation time should be related to this quan-
tity. In the Oldroyd model no relaxation processes are
incorporated in the constitutive equation of the vesicle
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membrane. Consequently the Oldroyd model has to be
adapted to the case where a dynamic shear modulus is
present. We have extended the constitutive equation of
the vesicle membrane with a frequency dependent part
that describes one relaxation process pertaining to shear
behavior and we have derived analytical results. We will
show that the mentioned relaxation time in our viscoelas-
tic experiment can be related to the dynamic shear mod-
ulus and that its numerical value is accidentally equal to
the value of the static shear modulus deduced with the
original Oldroyd model. We will also show that the ex-
tended model has one more macroscopic relaxation time
compared to the known Oldroyd model.

In Sec. II we will outline the procedure that is followed
to derive the new model and some analytical results will
be given. In Sec. III an analysis of the measurements
with the new model will be carried out.

II. THEORY

The first attempt to describe the viscoelastic behavior
of a suspension of deformable droplets has been made
by Oldroyd [3,4]. The main advantage of this model is
that it is rather simple and can easily be derived analyt-
ically. The interface between the droplet and the solvent
is infinitesimally thin and is characterized by an inter-
facial tension <, a surface shear modulus u, a surface
shear viscosity (, a surface dilatational modulus &, and
a surface dilatational viscosity o. These mechanical pa-
rameters are all constants, thus being static or stationary
quantities.

There is no need to describe again the Oldroyd model
in detail or to give a thorough derivation of the extended
model. We refer to [3-5] for a detailed analysis of the
original model. We have followed the procedure outlined
in [5] and will only present a brief reminder here.

A monodisperse dispersion of vesicles of radius a and
volume fraction c is modeled in the following. One vesicle
with internal viscosity 7; surrounded by a solvent with
viscosity 7) is considered. At radius b there is an imagi-
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nary interface between the solvent and a liquid with the
macroscopic dynamic viscosity n* of the dispersion. This
model is a cell model and the space inside the imagi-
nary interface will be referred to as the cell. The volume
of the artificial cell is chosen to be the total dispersion
volume divided by the number of vesicles. The fluid out-
side the cell is assumed to follow the macroscopic flow
exactly. For convenience this is a three-dimensional har-
monic oscillating elongational low with small amplitude,
thus modeling linear viscoelastic behavior.

The solution of the flow field according to the Stokes
equations in spherical coordinates (r,0,¢) with the same
symmetry as the macroscopic flow is well known [6]. The
¢ component of the fluid velocity is not present here,
because the deformation of a vesicle is symmetric with
respect to ¢. Therefore two velocity components remain,
as well inside as outside the vesicle, and they are known
except for a number of undetermined constants. At the
cell interface and the vesicle interface the velocity com-
ponents are continuous and so we obtain two equations
at each interface as a result of these boundary conditions.
The two components of the stress tensor that are relevant
are T;., and T,¢. They are not continuous across the vesi-
cle interface, for the surface stress has to be taken into
account. These boundary conditions result in another
two equations. The system of six equations that remains
contains six undetermined constants and therefore can
be solved. The macroscopic dynamic viscosity can be re-
lated to one of the constants that has to be determined
[5].

The Oldroyd model is a single droplet model not tak-
ing into account direct or indirect interactions between
droplets. Thus it only is valid to first order in c.

In the original Oldroyd model the complex shear mod-
ulus of the vesicle surface is given by

p* = p+iwd. (1)

We have extended the complex shear modulus with a
viscoelastic term with one relaxation time 7,:

. + Gr2w? tiw (¢ + G, @)
= —— ww — .
K ) + w272 1+ w272

The parameter G will be called the dynamic shear mod-
ulus. As mentioned earlier the static shear modulus p
is believed not to exist. We will not yet omit the static
shear modulus because we want to point out the differ-
ence between the original model and the extended one.
At time scales much longer than 7, the effective shear
modulus is p and the effective shear viscosity is ¢ + G4,
and at short time scales they are u + G and (, respec-
tively.

The new complex shear modulus is incorporated in the
two-dimensional surface stress tensor and this results in
an altered boundary condition for the T}.¢ components of
the macroscopic stress tensor across the vesicle interface.
Thus with just one of the six equations altered the ex-
tended Oldroyd model has been calculated analytically.
This result has been verified with REDUCE 3.4.

The macroscopic viscosity now becomes

. A1 + zwA2 - w2A3 - iw3A4
=0 (Bl + zw32 - sz3 - iw3B4)

3)

with A; and B; functions of a, n, n;, &, u, o, ¢, G, 7s,
and c¢. The complete solution is given in the Appendix.
This equation is rewritten as

7 =T"o - . - .
(14 twr) (14 iwrz) (1 + twTs)

(4)

We see that the extended Oldroyd model contains three
relaxation times 7; and three retardation times A;. This
means that by incorporating the relaxation process in the
vesicle membrane an extra macroscopic relaxation time
occurs, for the original model contains two relaxation
times. The low frequency limit of the complex viscosity is
the well-known Einstein expression 79 = n(1 + —;-c) The
analytical equations of the relaxation times are rather
complex and would take a few page’s space. Therefore
we only will consider the case that the relaxation times
are far apart. Then they can be approximated by

B,

T1 = B—l, (58,)
B3

T2 = B—z, (5b)
B,

T3 = B—3’ (5C)

with 71 > 75> 73. The concentration dependence of the
functions B; will be omitted. They cannot be determined
uniquely, because Eq. (3) only is valid to first order in c.
The functions B; can be rewritten as

B, =y, (6a)

By = Cy + C171, + D1G714, (6b)
Bs = Cs + Co7s + D2GTs, (6¢)
By = Cs,. (6d)

The functions C; are the coefficients of the second order
polynomial in w in the denominator of the expression of
the macroscopic complex viscosity in the original Oldroyd
model [5]. The functions D; are new and are

Dy = 64(y+r), (7a)
Dy = 8(12an + 13an; + 80) . (7b)
We see that when 7, = 0 the relaxation times of the

Oldroyd model are recovered directly. When G is small
enough, depending on the values of C;, the relaxation
times of the Oldroyd model also can be recovered and
the other relaxation time equals 7,. In the discussion we
return to this with an example.

The approximate expressions of the relaxation times
can be simplified when a priori assumptions are made
about the values of G, u, k, and v. The motive of this
work was the nonexistence of the static shear modulus
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and from now on we will set u equal to 0. The litera-
ture value of x is in the order of 0.1 Nm~! while the
value of v is much smaller than 1073 Nm™1, see, e.g.,
[1]. The value of « is so small that we only have to con-
sider the cases K > G > v and G > k> v. For both
cases a simplified expression for each relaxation time is
obtained and from the measurements we will show which
one is relevant here. In both cases another assumption is
necessary to obtain manageable expressions. These are
KTs > amn; an;; ;o in the first case and Gr,>an;an;; ¢ 0
in the second one. We will show below that these ap-
proximations are justified in the case considered.

When k > G > v the approximate relaxation times
become

1 2GT,
= — 1
1 24 (A1 + 16¢) + 3y (8a)
1 [A+16(¢C+C2
To = —16G ( I+16( 1 ) R (Sb)
16G71, +
1 [ Amr + 20 Ap + 4C A + 320¢
T3 = — 5 (SC)
2k Ar + 16 (c + G—})
and when G > k> they become
2G'T,
1 = 37 ) (ga‘)
1 K
7’2=§|:AH+8(0'+6<>], (9b)

1 A + 20 A1 + 4CAq + 320
T3 —_— . (9C)

:4G A11+8((T+%<)

We have used the following abbreviations:

Aj = 32an + 23an;, (10a)
A = 12an + 13an;, (10b)
A = 48a%n? + 89a%nm; + 38a%n?. (10c)

III. REANALYSIS OF MEASUREMENTS

The Oldroyd model only is valid in dilute dispersions
because the hydrodynamic and direct interactions be-
tween the vesicles have been neglected and its solution
is correct in first order of the vesicle concentration. The
experiments have been carried out with concentrated dis-
persions of vesicles above the lipid transition temperature
and it is obvious that vesicle interactions should be taken
into account. The direct interactions between the vesicles

are such that only hard sphere behavior can be expected.
This leads to the already mentioned longest relaxation
time. The hydrodynamic interactions are taken into ac-
count in an average way. The viscosity outside a vesicle
is strongly influenced by the presence of other vesicles.
Therefore n will be replaced by 7.s, which is an effective
value that accounts for the viscosity felt by the vesicle
(see [1,2]).

In the original Oldroyd model the relaxation time that
is dominated by the shear modulus is given by

r= L8 (11)
16p  p

This is valid when k > p > ~ so that it is far apart
from the other present relaxation time. In the viscoelas-
tic experiment the complex viscosity was measured as a
function of angular frequency; the vesicle concentration
and vesicle radii have been varied. The measured second
relaxation time as a function of Aj is given in Fig. 1.
From this figure and Eq. (11) the following values were
calculated:

p=1(21+£02)x10"3 Nm™?, (12a)

(<13x107' Nsm™ % (12b)
Equation (11) is valid, because p satisfies the approxima-
tion K>> p>>~y. As a further check on the model the same
experiment was done with a highly concentrated vesicle
system that was slightly aged and was diluted during the
experiment. This result is displayed in Fig. 2.

‘We will now use the extended Oldroyd model and show
that the experimental results can again be interpreted. In
the previous section Egs. (8) and (9) are the approxima-
tions of the three relaxation times when x> G >~ and
G > Kk > v, respectively. The longest relaxation times
Eqgs. (8a) and (9a) are dominated by v and are too long
and their strength too weak to be a possible candidate
for the measured relaxation time. So in both approxi-
mations two possible relaxation times remain: Egs. (8b),
(8¢), (9b), and (9c).

We have four different equations that have to be evalu-
ated in order to determine which one is the correct one to

T [10°6 5]

23an;+32an,, [10°Nsm-']

FIG. 1. The measured second relaxation time as a function
of A1 = 32anes + 23an; for a freshly made vesicle dispersion.
The best fit of the extended Oldroyd model is shown.
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FIG. 2. The measured second relaxation time as a function
of A1 = 32ane.s + 23an; for a dilution series of a slightly aged
vesicle dispersion. The best fit of the extended Oldroyd model
is shown.

describe the measured relaxation time. All four equations
can be fitted well to the measured data. When we use Eq.
(8c) or (9b) we obtain a value of « of order 1073 N m™1
and using Eq. (9c) we obtain G = (1.0 +0.1) x 1073 N
m~!, which means that x would even be smaller than
1073 N m~!. These values are not realistic, for we ex-
pect a value of x of order 107! N m~! or longer. When
the relaxation strength is calculated, in both cases we
see that the relaxation processes that are dominated by
the dilatational modulus are not as strong as the ones
dominated by the dynamic shear modulus. With all this
information we can state that the relaxation time 75 in
Eq. (8b) is the one that should be used to describe the
measured relaxation time.

In Figs. 1 and 2 the results of the best fits for this
relaxation time are shown. We find that for 7, > 2 x
1078 s Fig. 1 can be fitted well and for 7, > 107° s
Fig. 2 can be fitted well also. For a freshly made vesicle
dispersion we have

G=(204£0.2)x10"*Nm™, (13a)
¢+ Go <4x107' Nsm™}, (13b)
K
T, >2x107%s, (13c)
From Eq. (13b) we obtain
(<4x107" Nsm™, (14a)
7 <2x1078s, (14b)
K
and since ¥ > 10~ Nm™! we have
0 <2x107% Nsm™?. (15)

So with the extended model not only a maximum value
of ¢ is obtained, but also a maximum value of . The
effective viscosity at angular frequencies far below 7,71 is
now given by
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¢t =+ G, >4x107° Nsm™ 1. (16)

Its lowest value is of the same order as the maximum val-
ues found in literature [1]. Therefore we can expect that
the relaxation time 7, will not be larger than 105 s by
orders of magnitude, for then our effective viscosity will
be far too large. It is easily verified that the assumption
KTs > anes; ang; ;o is valid.

The relaxation time in Eq. (8c) is the same as the
relaxation time that was dominated by the dilatational
modulus in the original Oldroyd model. Therefore the
interpretation of the measured third relaxation time is
not affected by the extension of the model.

IV. DISCUSSION

We have incorporated one relaxation time in the com-
plex shear modulus of the lipid bilayer. An extension to
a series of relaxation times is straightforward, but is an-
alytically less transparent. Each incorporated relaxation
time brings about another macroscopic relaxation time.
Therefore we would obtain a macroscopic series of relax-
ation times. Approximations according to Egs. (5) are
not allowed because the relaxation times are not all far
apart anymore.

At first sight the replacement of a static shear modulus
© by a dynamic shear modulus G may look logical and
trivial. The value of y according to the Oldroyd model
and the value of G according to the extended model are
nearly equal. But when the relaxation times are plotted
as a function of G with 7, as the parameter it becomes
clear that only in a certain range of G the inversely linear
relation between 73 and G in Eq. (8b) exists. In Fig. 3
these relaxation times are shown. The parameter values
are of the experimentally necessary order of magnitude,
except for v for which no accurate literature values is

10! =
11(??’ 8a T 9a
PE T
1024 - e
1034 -7 .-~
1044 __
105+------- >~.8b
103 2
1077 4
1084 8c 9b
104
1010 : : , . : ~9
10¢ 105 104 10° 102 10' 10° 10' 102

Ty, Tg, T3 [S]

G [Nm1]

FIG. 3. The three relaxation times predicted by the ex-
tended Oldroyd model as a function of G with 7, = 107% s
(—), 7s = 107% s (- - -), and 7s = 10~* s (- -). The cor-
responding approximate equations are given and the vertical
dotted line marks their validity limit. The lines for the short-
est relaxation time coincide. The other parameter values are
i =7Neg =1x10"2Pas,a =1%x10""m, x = 0.1 Nm™?,
(=1x10"""Nsm ', u=0=0,and y=1x10"% Nm™?.
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known. For convenience o has been omitted. The reader
is reminded that Eqgs. (8) and (9) are not valid when the
times are close to each other.

For the original Oldroyd model approximate relations
for the relaxation times according to Egs. (5) have been
presented earlier [5]. It was shown that each relaxation
time could be written as a product of a two-dimensional
viscosity divided by a two-dimensional modulus times a
function of dimensionless parameters. In the extended
model this can also be done. When we rewrite Eq. (8b)
the dependence on 7, can be illustrated in another way:

1428m 41 (_4__ Go )

32 7esr aness Kaness

T = Tg 1+_2_377+l ¢ 1Gr (17)
32 nesr 2 aness 2 amesr

When the dimensionless quantities in numerator and de-
nominator are small with respect to 1 we have 75 ~ 7,.
Thus in the extended model the intrinsic relaxation time
T, can almost explicitly appear macroscopically with only
weak influence of a geometrical parameter and involved
viscosities and elasticities. It is not always realized that
this is possible.

The shortest relaxation time Eq. (8c) is independent
of G and 7,, but when G>> & it goes over in Eq. (9c); an
inversely linear relation in G results. For this relaxation
time a transition when G = k is visible in Fig. 3. The
longest relaxation times are given by Egs. (8a) and (9a).
For low G it is constant, at higher values it is linearly
increasing with G. The transition occurs when G7, is
of the same order as the maximum of aneg, an;, and .
As observed it follows from Eq. (17) (=8b), that at low
values of G the middle relaxation time equals 7,. We see
that there is a range for the middle relaxation time where
it is inversely linear in G' at moderate values of G and
at sufficiently high values of 7,. In this inversely linear
range our experimental results could be fitted well. The
transition at low G occurs when G7, is of the same order
as the maximum of aneg, an;, and ¢, while the transition
at high values of G occurs when G =~ k. When G is very
small the values of the longest and the shortest relaxation
times correspond to the values of the two relaxation times
in the original Oldroyd model.

This study sheds also another light on the interpreta-
tion of the viscoelastic behavior of aging vesicles. It was
noticed [2] that during the aging process the measured
second relaxation time increased and after a certain time
it became constant. The conclusion was that fully aged

vesicles have a constant minimum value of y. In the ex-
J

C1 = 64ypu + 96k + 64kp,

tended model this conclusion cannot be drawn. We do
not know what happens to the relaxation time 7,, but
suppose that it almost remains constant, then it is pos-
sible that the value of G becomes arbitrarily small and
the measured relaxation time equals 7,. So there may be
no minimum value of G.

V. CONCLUSIONS

We have shown that the interpretation of the measured
second relaxation time in the viscoelastic behavior of a
dispersion of vesicles can be related to a dynamic shear
modulus. This interpretation is consistent with the con-
viction that a static shear modulus cannot be present
at temperatures above the transition temperature of the
lipid bilayer.

APPENDIX
The complete analytical solution of the extended Ol-

droyd model will be given in this appendix. We rewrite
Eq. (3) in the more convenient form

n—=n 5 (Hi+iwH; — w?H; —iwdH, (A1)
n 2°\ B, +iwB, — w?B; — iw3B,

with B; and H; functions of a, 1, n;, K, i, o, ¢, G, and
7s. The functions B; are equal to the functions B; in
Eq. (3) when the terms that depend on concentration
are omitted. The macroscopic complex viscosity in the
original Oldroyd model is given by

n*—n _ 5c Ei + iwEs — w?E;q
n 2 \Cp+iwCs; —w2C3 /)’

(A2)

The functions B; and H; are

B, =Cy,

By = Cy + Cy7, + D1GT,,
B3z = C3 + Ca7, + DGy,
B4 = CsT,,

H, = E,,

H; = E; + Ey7, + F1GT,,
H3 = E3 + E37, + F2GT7,,
H, = E3T,.

The functions C;, D;, E;, and F; are

Cz = 104an; 1 + 92an;x + 80an;y + 64v( + 96yo + 64k( + 64p0 + 96any + 128ank + 80any,
Cs = T6a’n? + 104an;{ + 92an;o + 640¢ + 96a%n? + 178a%nm; + 96anC + 128ano,

D, = 64y + 64x,

D, = 104an; + 640 + 96a7,

E, =Cy,

E; = C; — 32anpu — 192ank — 48any,

E3; = C3 — 160a%n? — 190a’nm; — 32an¢ — 192ano,

F = Dl’
Fz = D2 - 32(17).
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